本文来自。
总览
先来看一下 FlatBuffers 项目已经为我们提供了什么,而我们在将 FlatBuffers 用到我们的项目中时又需要做什么的整体流程。如下图:
在使用 FlatBuffers 时,我们需要以特殊的格式定义我们的结构化数据,保存为 .fbs 文件。FlatBuffers 项目为我们提供了编译器,可用于将 .fbs 文件编译为Java文件,C++文件等,以用于我们的项目。FlatBuffers 编译器在我们的开发机,比如Ubuntu,Mac上运行。这些源代码文件是基于 FlatBuffers 提供的Java库生成的,同时我们也需要利用这个Java库的一些接口来序列化或解析数据。
我们将 FlatBuffers 编译器生成的Java文件及 FlatBuffers 的Java库导入我们的项目,就可以用 FlatBuffers 来对我们的结构化数据执行序列化和反序列化了。尽管每次手动执行 FlatBuffers 编译器生成Java文件非常麻烦,但不像 Protocol Buffers 那样,当前还没有Google官方提供的gradle插件可用。不过,我们这边开发了一个简单的 FlatBuffers gradle插件,后面会简单介绍一下,欢迎大家使用。
接下来我们更详细地看一下上面流程中的各个部分。
下载、编译 FlatBuffers 编译器
我们可以在如下位置:
https://github.com/google/flatbuffers/releases
获取官方发布的打包好的版本。针对Windows平台有编译好的可执行安装文件,对其它平台还是打包的源文件。我们也可以指向clone repo的代码,进行手动编译。这里我们从GitHub上clone代码并手动编译编译器:
$ git clone https://github.com/google/flatbuffers.gitCloning into 'flatbuffers'...remote: Counting objects: 7340, done.remote: Compressing objects: 100% (46/46), done.remote: Total 7340 (delta 16), reused 0 (delta 0), pack-reused 7290Receiving objects: 100% (7340/7340), 3.64 MiB | 115.00 KiB/s, done.Resolving deltas: 100% (4692/4692), done.Checking connectivity... done.
下载代码之后,我们需要用cmake工具来为flatbuffers生成Makefile文件并编译:
$ cd flatbuffers/$ cmake CMakeLists.txt -- The C compiler identification is AppleClang 7.3.0.7030031-- The CXX compiler identification is AppleClang 7.3.0.7030031-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc -- works-- Detecting C compiler ABI info-- Detecting C compiler ABI info - done-- Detecting C compile features-- Detecting C compile features - done-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++-- Check for working CXX compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -- works-- Detecting CXX compiler ABI info-- Detecting CXX compiler ABI info - done-- Detecting CXX compile features-- Detecting CXX compile features - done-- Configuring done-- Generating done-- Build files have been written to: /Users/netease/Projects/OpenSource/flatbuffers$ make && make install
安装之后执行如下命令以确认已经装好:
$ flatc --versionflatc version 1.4.0 (Dec 7 2016)
flatc没有为我们提供 --help 选项,不过加了错误的参数时这个工具会为我们展示详细的用法:
$ flatc --helpflatc: unknown commandline argument: --helpusage: flatc [OPTION]... FILE... [-- FILE...] --binary -b Generate wire format binaries for any data definitions. --json -t Generate text output for any data definitions. --cpp -c Generate C++ headers for tables/structs. --go -g Generate Go files for tables/structs. --java -j Generate Java classes for tables/structs. --js -s Generate JavaScript code for tables/structs. --csharp -n Generate C# classes for tables/structs. --python -p Generate Python files for tables/structs. --php Generate PHP files for tables/structs. -o PATH Prefix PATH to all generated files. -I PATH Search for includes in the specified path. -M Print make rules for generated files. --version Print the version number of flatc and exit. --strict-json Strict JSON: field names must be / will be quoted, no trailing commas in tables/vectors. --allow-non-utf8 Pass non-UTF-8 input through parser and emit nonstandard \x escapes in JSON. (Default is to raise parse error on non-UTF-8 input.) --defaults-json Output fields whose value is the default when writing JSON --unknown-json Allow fields in JSON that are not defined in the schema. These fields will be discared when generating binaries. --no-prefix Don't prefix enum values with the enum type in C++. --scoped-enums Use C++11 style scoped and strongly typed enums. also implies --no-prefix. --gen-includes (deprecated), this is the default behavior. If the original behavior is required (no include statements) use --no-includes. --no-includes Don't generate include statements for included schemas the generated file depends on (C++). --gen-mutable Generate accessors that can mutate buffers in-place. --gen-onefile Generate single output file for C#. --gen-name-strings Generate type name functions for C++. --escape-proto-ids Disable appending '_' in namespaces names. --gen-object-api Generate an additional object-based API. --cpp-ptr-type T Set object API pointer type (default std::unique_ptr) --raw-binary Allow binaries without file_indentifier to be read. This may crash flatc given a mismatched schema. --proto Input is a .proto, translate to .fbs. --schema Serialize schemas instead of JSON (use with -b) --conform FILE Specify a schema the following schemas should be an evolution of. Gives errors if not. --conform-includes Include path for the schema given with --conform PATH FILEs may be schemas, or JSON files (conforming to preceding schema)FILEs after the -- must be binary flatbuffer format files.Output files are named using the base file name of the input,and written to the current directory or the path given by -o.example: flatc -c -b schema1.fbs schema2.fbs data.json
创建 .fbs 文件
flatc支持将为 Protocol Buffers 编写的 .proto 文件转换为 .fbs 文件,如:
$ lsaddressbook.proto$ flatc --proto addressbook.proto $ ls -ltotal 16-rw-r--r-- 1 netease staff 431 12 7 17:21 addressbook.fbs-rw-r--r--@ 1 netease staff 486 12 1 15:18 addressbook.proto
Protocol Buffers 消息文件中的一些写法,FlatBuffers 编译器还不能很好的支持,如option java_package,option java_outer_classname,和嵌套类。这里我们基于 FlatBuffers 编译器转换的 .proto 文件来获得我们的 .fbs 文件:
// Generated from addressbook.protonamespace com.example.tutorial;enum PhoneType : int { MOBILE = 0, HOME = 1, WORK = 2,}namespace com.example.tutorial;table Person { name:string (required); id:int; email:string; phone:[com.example.tutorial._Person.PhoneNumber];}namespace com.example.tutorial._Person;table PhoneNumber { number:string (required); type:int;}namespace com.example.tutorial;table AddressBook { person:[com.example.tutorial.Person];}root_type AddressBook;
可以参考 来了解 .fbs 文件的详细的写法。
编译 .fbs 文件
可以通过如下命令编译 .fbs 文件:
$ flatc --java -o out addressbook.fbs
--java用于指定编译的目标编程语言。-o 参数则用于指定输出文件的路径,如过没有提供则将当前目录用作输出目录。FlatBuffers 编译器按照为不同的数据结构声明的namespace生成目录结构。对于上面的例子,会生成如下的这些文件:
$ find outp.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo}span.s1 {font-variant-ligatures: no-common-ligatures}$ find out/out/out//comout//com/exampleout//com/example/tutorialout//com/example/tutorial/_Personout//com/example/tutorial/_Person/PhoneNumber.javaout//com/example/tutorial/AddressBook.javaout//com/example/tutorial/Person.javaout//com/example/tutorial/PhoneType.java
在Android项目中使用 FlatBuffers
我们将前面由 .fbs 文件生成的Java文件拷贝到我们的项目中。我们前面提到的,FlatBuffers 的Java库比较薄,当前官方并没有发布到jcenter这样的maven仓库中,因而我们需要将这部分代码也拷贝到我们的额项目中。FlatBuffers 的Java库在其repo仓库的 java 目录下。我们有将这部分代码打包,放在公司的maven仓库中,引用的方法为,修改应用程序的 build.gradle:
repositories { maven { url "http://mvn.hz.netease.com/artifactory/libs-releases/" } maven { url "http://mvn.hz.netease.com/artifactory/libs-snapshots/" }}dependencies { compile fileTree(dir: 'libs', include: ['*.jar']) compile project(':netlib') testCompile 'junit:junit:4.12' compile 'com.netease.hearttouch:ht-flatbuffers:0.0.1-SNAPSHOT'}
添加访问 FlatBuffers 的类:
package com.netease.volleydemo;import com.example.tutorial.AddressBook;import com.example.tutorial.Person;import com.example.tutorial._Person.PhoneNumber;import com.google.flatbuffers.FlatBufferBuilder;import java.nio.ByteBuffer;/** * Created by hanpfei0306 on 16-12-5. */public class AddressBookFlatBuffers { public static byte[] encodeTest(String[] names) { FlatBufferBuilder builder = new FlatBufferBuilder(0); int[] personOffsets = new int[names.length]; for (int i = 0; i < names.length; ++ i) { int name = builder.createString(names[i]); int email = builder.createString("zhangsan@gmail.com"); int number1 = builder.createString("0157-23443276"); int type1 = 1; int phoneNumber1 = PhoneNumber.createPhoneNumber(builder, number1, type1); int number2 = builder.createString("136183667387"); int type2 = 0; int phoneNumber2 = PhoneNumber.createPhoneNumber(builder, number2, type2); int[] phoneNubers = new int[2]; phoneNubers[0] = phoneNumber1; phoneNubers[1] = phoneNumber2; int phoneNumbersPos = Person.createPhoneVector(builder, phoneNubers); int person = Person.createPerson(builder, name, 13958235, email, phoneNumbersPos); personOffsets[i] = person; } int persons = AddressBook.createPersonVector(builder, personOffsets); AddressBook.startAddressBook(builder); AddressBook.addPerson(builder, persons); int eab = AddressBook.endAddressBook(builder); builder.finish(eab); byte[] data = builder.sizedByteArray(); return data; } public static byte[] encodeTest(String[] names, int times) { for (int i = 0; i < times - 1; ++ i) { encodeTest(names); } return encodeTest(names); } public static AddressBook decodeTest(byte[] data) { AddressBook addressBook = null; ByteBuffer byteBuffer = ByteBuffer.wrap(data); addressBook = AddressBook.getRootAsAddressBook(byteBuffer); return addressBook; } public static AddressBook decodeTest(byte[] data, int times) { AddressBook addressBook = null; for (int i = 0; i < times; ++ i) { addressBook = decodeTest(data); } return addressBook; }}
使用 flatbuf-gradle-plugin
我们有开发一个 FlatBuffers 的gradle插件,以方便开发,。这个插件的设计有参考Google的protobuf-gradle-plugin,功能及用法也与protobuf-gradle-plugin类似。
应用flatbuf-gradle-plugin
修改应用程序的 build.gradle 以应用flatbuf-gradle-plugin
。
- 为buildscript添加对
flatbuf-gradle-plugin
的依赖:buildscript { repositories { maven { url "http://mvn.hz.netease.com/artifactory/libs-releases/" } maven { url "http://mvn.hz.netease.com/artifactory/libs-snapshots/" } } dependencies { classpath 'com.netease.hearttouch:ht-flatbuf-gradle-plugin:0.0.1-SNAPSHOT' }}
- 在
apply plugin: 'com.android.application'
后面应用flatbuf的plugin:apply plugin: 'com.android.application'apply plugin: 'com.netease.flatbuf'
-
添加flatbuf块,对flatbuf-gradle-plugin的执行做配置:
flatbuf { flatc { path = '/usr/local/bin/flatc' } generateFlatTasks { all().each { task -> task.builtins { remove java } task.builtins { java { } } } }}
flatc
块用于配置 FlatBuffers 编译器,这里我们指定用我们之前手动编译的编译器。task.builtins
的块必不可少,这个块用于指定我们要为那些编程语言生成代码,这里我们为Java生成代码。 - 指定 .fbs 文件的路径
sourceSets { main { flat { srcDir 'src/main/flat' } } }
我们将 FlatBuffers 的IDL文件放在src/main/flat目录下。
这样我们就不用再那么麻烦每次手动执行flatc了。
FlatBuffers、Protobuf及JSON对比测试
FlatBuffers相对于Protobuf的表现又如何呢?这里我们用数据说话,对比一下FlatBuffers格式、JSON格式与Protobuf的表现。测试同样用fastjson作为JSON的编码解码工具。
测试用的数据结构所有的数据结构,Protobuf相关的测试代码,及JSON的测试代码同 一文所述,FlatBuffers的测试代码如上面看到的 AddressBookFlatBuffers。
通过如下的这段代码来执行测试:
private class ProtoTestTask extends AsyncTask{ private static final int BUFFER_LEN = 8192; private void compress(InputStream is, OutputStream os) throws Exception { GZIPOutputStream gos = new GZIPOutputStream(os); int count; byte data[] = new byte[BUFFER_LEN]; while ((count = is.read(data, 0, BUFFER_LEN)) != -1) { gos.write(data, 0, count); } gos.finish(); gos.close(); } private int getCompressedDataLength(byte[] data) { ByteArrayInputStream bais =new ByteArrayInputStream(data); ByteArrayOutputStream baos = new ByteArrayOutputStream(); try { compress(bais, baos); } catch (Exception e) { } return baos.toByteArray().length; } private void dumpDataLengthInfo(byte[] protobufData, String jsonData, byte[] flatbufData) { int compressedProtobufLength = getCompressedDataLength(protobufData); int compressedJSONLength = getCompressedDataLength(jsonData.getBytes()); int compressedFlatbufLength = getCompressedDataLength(flatbufData); Log.i(TAG, String.format("%-120s", "Data length")); Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s", "Protobuf", "Protobuf (GZIP)", "JSON", "JSON (GZIP)", "Flatbuf", "Flatbuf (GZIP)")); Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s", String.valueOf(protobufData.length), compressedProtobufLength, String.valueOf(jsonData.getBytes().length), compressedJSONLength, String.valueOf(flatbufData.length), compressedFlatbufLength)); } private void doEncodeTest(String[] names, int times) { long startTime = System.nanoTime(); byte[] protobufData = AddressBookProtobuf.encodeTest(names, times); long protobufTime = System.nanoTime(); protobufTime = protobufTime - startTime; startTime = System.nanoTime(); String jsonData = AddressBookJson.encodeTest(names, times); long jsonTime = System.nanoTime(); jsonTime = jsonTime - startTime; startTime = System.nanoTime(); byte[] flatbufData = AddressBookFlatBuffers.encodeTest(names, times); long flatbufTime = System.nanoTime(); flatbufTime = flatbufTime - startTime; dumpDataLengthInfo(protobufData, jsonData, flatbufData); Log.i(TAG, String.format("%-20s%-20s%-20s%-20s", "Encode Times", String.valueOf(times), "Names Length", String.valueOf(names.length))); Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s", "ProtobufTime", String.valueOf(protobufTime), "JsonTime", String.valueOf(jsonTime), "FlatbufTime", String.valueOf(flatbufTime))); } private void doEncodeTest10(int times) { doEncodeTest(TestUtils.sTestNames10, times); } private void doEncodeTest50(int times) { doEncodeTest(TestUtils.sTestNames50, times); } private void doEncodeTest100(int times) { doEncodeTest(TestUtils.sTestNames100, times); } private void doEncodeTest(int times) { doEncodeTest10(times); doEncodeTest50(times); doEncodeTest100(times); } private void doDecodeTest(String[] names, int times) { byte[] protobufBytes = AddressBookProtobuf.encodeTest(names); ByteArrayInputStream bais = new ByteArrayInputStream(protobufBytes); long startTime = System.nanoTime(); AddressBookProtobuf.decodeTest(bais, times); long protobufTime = System.nanoTime(); protobufTime = protobufTime - startTime; String jsonStr = AddressBookJson.encodeTest(names); startTime = System.nanoTime(); AddressBookJson.decodeTest(jsonStr, times); long jsonTime = System.nanoTime(); jsonTime = jsonTime - startTime; byte[] flatbufData = AddressBookFlatBuffers.encodeTest(names); startTime = System.nanoTime(); AddressBookFlatBuffers.decodeTest(flatbufData, times); long flatbufTime = System.nanoTime(); flatbufTime = flatbufTime - startTime; Log.i(TAG, String.format("%-20s%-20s%-20s%-20s", "Decode Times", String.valueOf(times), "Names Length", String.valueOf(names.length))); Log.i(TAG, String.format("%-20s%-20s%-20s%-20s%-20s%-20s", "ProtobufTime", String.valueOf(protobufTime), "JsonTime", String.valueOf(jsonTime), "FlatbufTime", String.valueOf(flatbufTime))); } private void doDecodeTest10(int times) { doDecodeTest(TestUtils.sTestNames10, times); } private void doDecodeTest50(int times) { doDecodeTest(TestUtils.sTestNames50, times); } private void doDecodeTest100(int times) { doDecodeTest(TestUtils.sTestNames100, times); } private void doDecodeTest(int times) { doDecodeTest10(times); doDecodeTest50(times); doDecodeTest100(times); } @Override protected Void doInBackground(Void... params) { TestUtils.initTest(); doEncodeTest(5000); doDecodeTest(5000); return null; } @Override protected void onPostExecute(Void aVoid) { super.onPostExecute(aVoid); } }
这里我们执行3组编码测试及3组解码测试。对于编码测试,第一组的单个数据中包含10个Person,第二组的包含50个,第三组的包含100个,然后对每个数据分别执行5000次的编码操作。
对于解码测试,三组中单个数据同样包含10个Person、50个及100个,然后对每个数据分别执行5000次的解码码操作。
在Galaxy Nexus的Android 4.4.4 CM平台上执行上述测试,最终得到如下结果:
编码后数据长度对比 (Bytes)
Person个数 | Protobuf | Protobuf(GZIP) | JSON | JSON(GZIP) | Flatbuf | Flatbuf(GZIP) |
---|---|---|---|---|---|---|
10 | 860 | 288 | 1703 | 343 | 1532 | 513 |
50 | 4300 | 986 | 8463 | 1048 | 7452 | 1814 |
100 | 8600 | 1841 | 16913 | 1918 | 14852 | 3416 |
相同的数据,经过编码,在压缩前JSON的数据最长,FlatBuffers的数据长度与JSON的短大概10 %,而Protobuf的数据长度则大概只有JSON的一半。而在用GZIP压缩后,Protobuf的数据长度与JSON的接近,FlatBuffers的数据长度则接近两者的两倍。
编码性能对比 (S)
Person个数 | Protobuf | JSON | FlatBuffers |
---|---|---|---|
10 | 6.000 | 8.952 | 12.464 |
50 | 26.847 | 45.782 | 56.752 |
100 | 50.602 | 73.688 | 108.426 |
编码性能Protobuf相对于JSON有较大幅度的提高,而FlatBuffers则有较大幅度的降低。
解码性能对比 (S)
Person个数 | Protobuf | JSON | FlatBuffers |
---|---|---|---|
10 | 0.255 | 10.766 | 0.014 |
50 | 0.245 | 51.134 | 0.014 |
100 | 0.323 | 101.070 | 0.006 |
解码性能方面,Protobuf相对于JSON,有着惊人的提升。Protobuf的解码时间几乎不随着数据长度的增长而有太大的增长,而JSON则随着数据长度的增加,解码所需要的时间也越来越长。而FlatBuffers则由于无需解码,在性能方面相对于前两者更有着非常大的提升。
网易云新用户大礼包:
本文来自网易云社区,经作者韩鹏飞授权发布。